Speech & Audio Processing / Part-II

Digital Audio Signal Processing **DASP**

Marc Moonen

Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be homes.esat.kuleuven.be/~moonen/

1

Outline

- Aims/Scope
- Contents
- Case Study: Hearing Instruments
- Lectures/Lab Sessions/Exam Website/Questions

Digital Audio Signal Processing

Version 2023-2024

Chapter-1: Introduction

2 / 40

Aims/Scope

Aim is 2-fold...

Speech & audio per se
 S & A industry in Belgium/Europe/...

Topics: Noise Reduction / Acoustic Echo & Feedback Cancellation /
Active Noise Control / Sound Reproduction / ..etc

 Develop basic signal processing tools/principles which are also used in many other fields

Spatial filter design (for wireless comms)

Adaptive filter algorithms, filtered-X LMS (for active vibration control)

Kalman filters (for automatic control, navigation, ..)
..etc

Digital Audio Signal Processing

/ersion 2023-2024

Chapter-1: Introduction

3 / 40

3

Outline

- Aims/Scope
- Contents
- Case Study: Hearing Instruments
- Lectures/Lab Sessions/Exam
 Website/Questions

Digital Audio Signal Processing

Version 2023-2024

Chapter-1: Introduction

4 / 40

Contents

- Chapter-1: Introduction
- Chapter-2: Single-Channel Noise Reduction
- Chapter-3: Microphone Array Processing
 - Fixed Beamforming
- Chapter-4: Microphone Array Processing
 - Adaptive Beamforming
 - Multi-Channel Noise Reduction
- Chapter-5: Acoustic Echo & Feedback Cancellation
- Chapter-6: Sound Field Control
- Chapter-7: Sound Field Recording and Reproduction
 - (= Guest Lecture Dr. Enzo De Sena, Univ.Sussex, UK)
- Chapter-8: Hearing Aid Signal Processing
 - (= Guest Lecture Dr. Jesper Jensen, Oticon/Demant, DK)

Digital Audio Signal Processing

Version 2023-2024

Chapter-1: Introduction

5 / 40

5

Contents: Chapter-2 Single-Channel Noise Reduction desired signal s[k] desired signal estimate y[k] = s[k] + n[k] $\widehat{s}[k]$ desired signal noise signal(s) contribution contribution • Spectral subtraction methods (spectral filtering) · Iterative methods based on speech modeling (Wiener & Kalman Filters) Applications: smartphones, conferencing, hearing aids, ... Digital Audio Signal Processing Version 2023-2024 Chapter-1: Introduction

Outline

- Aims/Scope
- Contents
- Case Study: Hearing Instruments
- Lectures/Lab Sessions/Exam Website/Questions

Digital Audio Signal Processing

Version 2023-2024

Chapter-1: Introduction

Case Study: Hearing Instruments 1/15

DASP Challenges in hearing instruments (next slides)

- · Dynamic range compression
- Noise reduction (=chapter 2-3-4, chapter 7)
- Dereverberation
- Acoustic feedback cancellation (=chapter 5)
- Active noise control (=chapter 6)
- Etc.

Technology Challenges in hearing instruments

- Small form factor (cfr. user acceptance)
- Low power: 1...5mW (cfr. battery lifetime ≈ 1 week)
- Low processing delay: 10msec (cfr. synchronization with lip reading)

Digital Audio Signal Processing

Version 2023-2024

Chapter-1: Introduction

15 / 40

15

Case Study: Hearing Instruments 2/15 **Hearing** Outer ear/middle ear/inner ear Tonotopy of inner ear: spatial arrangement of where sounds of different frequency are processed Buitenoor Low-freq Hamer Aambeeld Cochlea High-freq for low-freq tone tone Gehoorgang Trommelvlies Digital Audio Signal Processing Version 2023-2024

Outline

- Aims/Scope
- Contents
- Case Study: Hearing Instruments
- Lectures/Lab Sessions/Exam
 Website/Questions

Digital Audio Signal Processing

Version 2023-2024

Chapter-1: Introduction

31 / 40

31

Lectures: 8 Lectures Course Material: Slides - Use version 2023-2024! - Download (pdf/ppt) from TOLEDO or DASP webpage homes.esat.kuleuven.be/~dspuser/dasp/ - Master copy can be made available if needed - Optional: Slides 2020-2021 with audio Course Prerequisite: DSP-CIS H05F3A/H05F1A filter design, filter banks, optimal & adaptive filters https://nomes.e.at.kuleuven.be/~dspuser/DSP-CIS/2022-2023/

Literature

Literature (General DSP)

- Simon Haykin
 `Adaptive Filter Theory' (Prentice Hall 1996)
- P.P. Vaidyanathan

 `Multirate Systems and Filter Banks' (Prentice Hall 1993)

Literature (Speech/Audio/Acoustics)

- S.L. Gay & J. Benesty

 `Acoustic Signal Processing for Telecommunication' (Kluwer 2000)
- M. Kahrs & K. Brandenburg (Eds)
 `Applications of Digital Signal Processing to Audio and Acoustics'
 (Kluwer1998)
- B. Gold & N. Morgan

 `Speech and Audio Signal Processing' (Wiley 2000)

Digital Audio Signal Processing

Version 2023-2024

Chapter-1: Introduction

33 / 40

	Lecture (hrs)	Self Study (hrs)
Chapter-1	2	2 (≢ exam material)
Chapter-2	2	6
Chapter-3	2	6
Chapter-4	2	6
Chapter-5	2	6
Chapter-6	2	6
Chapter-7 (guest lecture)	2 (attendance=mandatory)	6
Chapter-8 (guest lecture)	2 (attendance=mandatory)	6
TOTAL = 60 hrs		
	Lab Session (hrs)	Homework (hrs)
Session-1	2.5	5
Session-2	2.5	5
Session-3	2.5	5
Session-4	2.5	5
TOTAL = 30 hrs		

Website

Course info & material in...

- 1) TOLEDO
- 1) http://homes.esat.kuleuven.be/~dspuser/dasp/
- Slides
- Schedule
- Contact: julian.schott@kuleuven.be

Version 2023-2024 Chapter-1: Introduction

39

Questions?

- 1) Toledo
- 2) Ask Teaching Assistants (during lab sessions)
- 3) E-mail questions to or marc.moonen@esat.kuleuven.be
- 3) Make appointment marc.moonen@esat.kuleuven.be ESAT Room B00.14

Digital Audio Signal Processing

Version 2023-2024

Chapter-1: Introduction